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Abstract—Location information of sensor nodes is the key
information which is used for routing, target tracking, deployment,
rescue or coverage etc... Since wireless sensor network consists of a
large number of low cost sensor nodes which are deployed over a
wide area and used for environmental monitoring, battle field
surveillance, health surveillance; it is required to know the position
of sensor nodes. For researcher this localization estimation is the
significant challenge. GPS (Global positioning system) is one of the
widely accessible and accurate techniques used for location
estimation of sensor nodes. The drawback of GPS is its high cost and
energy consumption. To reduce the energy consumption and cost
some beacon nodes which contain the GPS modules are deployed;
other nodes determine their location using localization techniques. In
1960 R.E. Kalman gave a recursive approach to the discrete-data
linear filtering problem. To estimate the state of a process with
minimum error rate, Kalman filtering uses a set of mathematical
equations. In 1970 Handschin, introduced Monte Carlo Localization
(MCL), another new algorithm for mobile sensor localization. It is
based on Markov localization; a family of probabilistic approaches.
The purpose of this paper is to provide efficient and detailed
information about the Kalman Filter, Extended Kalman Filter, Monte
Carlo Localization, and Improved Monte Carlo Localization.
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1. INTRODUCTION

Wireless sensor network (WSN) is a collection of tiny sensing
devices which are physically distributed over a wide area.
These sensing devices are used to track the position of a
moving target, to detect the presence of a contaminant in a
water reservoir or to estimate the temperature in an orange
grove etc...

2. KALMAN FILTER

Kalman filter is one of the most well-known and often-used
mathematical tool that can be used for stochastic estimation
from noisy sensor measurements. In 1960, Rudolph E. Kalman
proposed a recursive solution to the discrete-data linear
filtering problem and after that it was named as Kalman Filter.
Kalman filtering is also known as linear quadratic estimation
(LQE). It is a set of mathematical equations that uses a

predictor-corrector type estimator to optimize the problem and
minimizing estimated error covariance when some presumed
conditions are met. In an environment which contains
inaccuracies, noise (random variations), it uses a series of
measurements observed over time and produces estimates of
unknown variables that tend to be more precise than those
based on a single measurement alone.

For any underlying system state, Kalman Filter uses recursive
approach to produce optimized estimates. This algorithm is a
two-step process-

e  Prediction Step

In this step algorithm generates estimates of the current state
variables along with their uncertainties.

e  Update Step

Once the result of the next measurement (necessarily
corrupted with some amount of error, including random noise)
is generated; these estimates are updated using a weighted
average, with more weight being given to estimates with
higher certainty.

Kalman filter algorithm is recursive in nature; it uses the
previously calculated state and its uncertainty matrix and
present input to to produce optimized estimates. It does not
require the additional past information. There are so many
other extended and generalized methods (such as the extended
Kalman filter and the unscented Kalman filter which work on
nonlinear systems) of Kalman filter have been developed.
Extended Kalman filter and unscented Kalman filter (the
variants of Kalman filter) are the most celebrated and popular
data fusion algorithms in the field of information processing.
The most important use of Kalman filter was in the Apollo
navigation computer that took Neil Armstrong to the moon,
and (most importantly) brought him back. In recent years
Kalman filters are at work in every smart phone, every
satellite navigation device and many computer games

After 55 years, Kalman filter is one of the most important and
common data fusion algorithms in use today, the purpose of
using Kalman filter include -
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e Smoothing noisy data and providing estimates of
parameters of interest.

¢ Global positioning system receivers,

e  Phase locked loops in radio equipment,

e Smoothing the output from laptop track pads, and many

more.
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The Kalman filter keeps track of the estimated state of the system
and the variance or uncertainty of the estimate. The estimate is
uPdated using a state transition model and measurements.

I:ﬁl,ﬁ_l denotes the estimate of the system's state at time step k
before the k-th measurement y, has been taken into account;

k=1 i the corresponding uncertainty.

A. Kalman Filter Algorithm

To estimate a process Kalman Filter uses a form of feedback
control. At some time the filter estimates the process state and
obtains feedback in the form of (noisy) measurements. There
are two groups of equations for the Kalman filter.

e Time Update Equations

To obtain the a priori estimates for the next time step, the
current state and error covariance estimates are projecting
forward (in time) by these equations. These time update
equations is also known as predictor equations

e Measurement Update Equations

To obtain an improved a posteriori estimate, these equations
incorporating a new measurement into the a priori estimate.
These measurement update equations can also be known as
corrector equations

In the below figure we resembles that of a predictor-corrector
algorithm as the final estimation algorithm for solving numerical
problems.
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The figure shows the Kalman filter cycle. For projection of
current state estimation we use the time update whereas these
projected estimates are incorporated with actual measurement
at that time by measurement update.

There are so many equations used by time update and
measurement update which are given below-

For a discrete-time controlled process that is governed by the
linear stochastic difference equation; The Kalman filter addresses

. n
the problem as below, to estimate the state X [1[][] -

Xp = Axp_y T Bup_ Twi_g.
1)
Let Q be the process noise covariance and R be the measurement
noise covariance matrices. The n [1[JNn matrix A relates the state
at the previous time step k — 1 to the state at the current step k.
The n [J1]] matrix B relates the optional control input to the state
x. The m [J[In matrix H relates the state to the measurement z;.

e Time update equations are

Xp = AXp T Buy_y

)
P,= AP, ;AT +Q )
e  Measurement update equations are
K, = PHI(HP;HT +R)™ "
Xp = X+ Kz — HXp) )
P, = (I-K,H)P;
P )Py ©

Here 'Lk [100[J[1" is a priori state estimate at step k. P s the a
priori estimate error covariance, P} is the a posteriori estimate

error covariance.

In measurement update initially we determine the Kalman gain,
Kk. The next step is to actually measure the process to obtain zy,
and then by incorporating the measurement it generate an a
posteriori state estimate (5). Posteriori error covariance estimate
is the final step (6).

The process is repeated after each time and measurement
update pair. The previous a posteriori estimates are used to
project or predict the new a priori estimates with each
repetition. This recursive feature of Kalman filter makes it
very powerful algorithm. For example Wiener filter is
designed to operate on all of the data directly for each
estimate, whereas The Kalman filter recursively conditions the
current estimate on all of the past measurements. This
recursive-ness makes practical implementations of Kalman
filter much more feasible.
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3. EXTENDED KALMAN FILTER (EKF)

For a discrete-time controlled process, Kalman filter algorithm is

basically used to estimate the state X [][] Ln. This discrete-time
controlled process should be governed by a linear stochastic
difference equation. But the problem arises when the
measurement relationship to the process is non-linear. The
extended Kalman filter or EKF is the extension of the Kalman
Filter that is used to linearize about the current mean and
covariance.

Let us assume that our process is now governed by the non-linear

L . n
stochastic difference equation and has a state vector X [J[1[] .
The non-linear stochastic difference equation is given by-

Xe = flXe_qullp_qa Wi )
= SO U Wi (7)

The extended Kalman filter EKF is using so many time update
and measurement update equations that are given below —

e Time update equations are-

X, = flXe_ 4.0z 4.0
p = S up_ g, 0 ®

_ T w T
Pp=APp 1A W0y T ©

The time update equations are used to project the state and
covariance estimates from the previous time step k — 1 to the
current time step k similar to basic discrete Kalman filter. Here
Qx is the process noise covariance at step k and Ax and Wy are the
process Jacobians at step k.

e  Measurement update equations are-

Ky = PyHi (HPHE + ViR Vi)

1

(10)
Xp = X+ Kz —h(xp 0)) an

The measurement update equations are used to correct the state
and covariance estimates with the measurement z similar to basic
discrete Kalman filter. Here R is the measurement noise
covariance at step k and H and V are the measurement Jacobians
at step k.

4. MONTE CARLO LOCALIZATION

Monte Carlo localization (MCL) is a well-known algorithm
which is used for position estimation of sensor nodes. In 1970
Handschin, introduced Monte Carlo methods and in 1993
Gordon, Salmond, & Smith reintroduced MCL for the target-
tracking. This algorithm is also known as particle filter
localization because it is using particle filters to estimate the
position. Since a mobile sensor node moves and senses the
environment, the Monte Carlo localization algorithm estimates
the orientation and position of these moving nodes.

Particle filters are used by MCL algorithm to represent the
distribution of likely states. These particles describe the
hypothesis of where the sensor is that is these particles represent a
possible state. Since at the beginning sensor have no information
about its position, MCL uses the uniform random distribution of
particles over the configuration space and assumes it is equally
likely to be at any point in space. MCL predict new state of the
sensor after its movement by shifting the particles. Recursive
Bayesian estimation is used to resample the particles, whenever
the sensor senses anything it means it correlate the actual sensed
data with the predicted state. Finally with MCL algorithm the
particles meet the actual position of the sensor. Monte Carlo
Localization (MCL) uses fast sampling of the particle filters. To
estimate the posterior distribution when the sensor moves or
senses resampling is applied.

To determine the number of samples on-the-fly, Koller &
Fratkina gave an adaptive sampling scheme in 1998 which is
employed to trade-off computation and accuracy. Many samples
used by the MCL during global localization. The size of the
sample is small when the location of the sensor node is
approximately known. There are many key advantages if
sampling based representation is used; some of them are given
below-

e It can globally determine the position of the sensor nodes and
is able to multi-modal distributions in contrast to existing
Kalman filtering based techniques.

e As compare to grid-based Markov localization, it reduces the
amount of memory required and can integrate measurements
at a higher frequency.

e Since state represented in the samples is not discretized,
accuracy of Monte Carlo localization is more than the
Markov localization with a fixed cell size.

e Itimplement is easier than other localization schemes.

A. Monte Carlo Localization Algorithm

The purpose of Monte Carlo Localization algorithm is to
determine the position of the sensor nodes in an environment.
As an input, this algorithm takes the data received from
sensors #f, an actuatlon command Y, previous belief

[ﬂfl
Xpmy =y, 2y, 2]
and output of the algorithm is the new belief X t.
Algorithm MCL (X1, Uy, Z;)

XE:Xf:ﬂ

Form=1toM

at every time T

x™ =motion update(u;, x.1™)

w{™ =sensor update(z, x™)
[m Uk
Xf - XE + {I ]-‘ rl: ]>

End for
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For m=1 to M

Draw x/™ from X t with probability proportional to w,™

X=X+ Xt[m]
End for
return X;

5. IMPROVED MONTE CARLO LOCALIZATION

As discussed above Monte Carlo localization (MCL) is a
technique for distance measurement of sensor nodes in wireless
sensor network. It is based on particle filter combined with
probabilistic models of sensor perception and motion. The main
idea behind the MCL is to use a set of weighted samples and the
posterior distribution of possible locations. There are two phase at
each step-

Prediction phase: - In this phase when the sensor moves, the
uncertainty of its position increases.

Update phase: - In this phase new observations are incorporated
to filter and update data.

This is the recursive process where the sensor updates the
predicted location continuously. There are two major problems
with the previous existing schemes.

e  First problem uses only a constant number of samples.

e Second is all nodes cannot ne localized in all time slots.
Improved Monte Carlo Localization (IMCL) technique
overcomes these problems. Network model is introduced

in IMCL scheme with five main parts that are discussed below

e  Bounding-box construction
e  Dynamic sampling

e Time series forecasting

e  Samples weights computing

e  Maximum possible localization error computing

e  Building the Bounding Box

. - .- Radio range
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In Bounding box of Improved Monte Carlo Localization (IMCL)
there are two areas involved. These areas are — The candidate
samples area and the valid samples area.

Candidate Samples Area: - This area is used to draw new
candidate samples.

Valid Samples Area: - This area is used to identify and filter out
the invalid samples out of all the available samples.

There is a large probability that candidate samples drawn in the
sampling step will be filtered out in the filtering step if the
candidate samples area is large and the valid samples area is
small. The construction of bounding box in IMCL schemes is
shown above-

e  Dynamic sampling method

For localization, the number of samples in the previous schemes
is fixed like 30 or 50. But in Improved Monte Carlo scheme the
number of samples is dynamic that is based on the size of the
sample area. To estimate the nodes location accurately for a large
anchor box, a large number of samples are needed. Whereas we
focuses on a small area if the anchor box is small and for that
small area to determine the position accurately; a small number of
samples is needed.

e Linear prediction using time series

In a time- varying environment to predict time series, linear
prediction method is a very helpful and powerful technique.

e  Weighting the Samples

When a candidate sample is chosen, its weight is being calculated
by using 1-hop (anchor) and 2-hop (common) neighbor nodes.
The technique of computing weight is given below-

e  Error Computation

The sensor node determines its position by computing the
weighted average of these samples after obtaining N valid
samples. Also with the help of the bounding box and position
estimations, the sensor node can also determine the ERx and ERy
as shown below.

[~ Max error
In x-auxds

Max error
In x-axis

Max error in y-axis Max error in y-axis

(a) (b)
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6. CONCLUSION

In this paper we discussed the problem of localization in wireless
sensor network and studied so many approaches like Kalman
Filtering, Extended Kalman Filtering, Monte Carlo Localization
(MCL), and Improved Monte Carlo Localization (IMCL) to
overcome this issue of localization in WSN. This paper will help
to wireless sensor network designer to choose the best method
(among the discussed above), to implement in their applications.
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