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Abstract—Location information of sensor nodes is the key 
information which is used for routing, target tracking, deployment, 
rescue or coverage etc… Since wireless sensor network consists of a 
large number of low cost sensor nodes which are deployed over a 
wide area and used for environmental monitoring, battle field 
surveillance, health surveillance; it is required to know the position 
of sensor nodes. For researcher this localization estimation is the 
significant challenge. GPS (Global positioning system) is one of the 
widely accessible and accurate techniques used for location 
estimation of sensor nodes. The drawback of GPS is its high cost and 
energy consumption. To reduce the energy consumption and cost 
some beacon nodes which contain the GPS modules are deployed; 
other nodes determine their location using localization techniques. In 
1960 R.E. Kalman gave a recursive approach to the discrete-data 
linear filtering problem. To estimate the state of a process with 
minimum error rate, Kalman filtering uses a set of mathematical 
equations. In 1970 Handschin, introduced Monte Carlo Localization 
(MCL), another new algorithm for mobile sensor localization. It is 
based on Markov localization; a family of probabilistic approaches. 
The purpose of this paper is to provide efficient and detailed 
information about the Kalman Filter, Extended Kalman Filter, Monte 
Carlo Localization, and Improved Monte Carlo Localization. 
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1. INTRODUCTION 

Wireless sensor network (WSN) is a collection of tiny sensing 
devices which are physically distributed over a wide area. 
These sensing devices are used to track the position of a 
moving target, to detect the presence of a contaminant in a 
water reservoir or to estimate the temperature in an orange 
grove etc… 

2. KALMAN FILTER 

Kalman filter is one of the most well-known and often-used 
mathematical tool that can be used for stochastic estimation 
from noisy sensor measurements. In 1960, Rudolph E. Kalman 
proposed a recursive solution to the discrete-data linear 
filtering problem and after that it was named as Kalman Filter. 
Kalman filtering is also known as linear quadratic estimation 
(LQE). It is a set of mathematical equations that uses a 

predictor-corrector type estimator to optimize the problem and 
minimizing estimated error covariance when some presumed 
conditions are met. In an environment which contains 
inaccuracies, noise (random variations), it uses a series of 
measurements observed over time and produces estimates of 
unknown variables that tend to be more precise than those 
based on a single measurement alone. 

For any underlying system state, Kalman Filter uses recursive 
approach to produce optimized estimates. This algorithm is a 
two-step process- 

 Prediction Step 

In this step algorithm generates estimates of the current state 
variables along with their uncertainties. 

 Update Step 

Once the result of the next measurement (necessarily 
corrupted with some amount of error, including random noise) 
is generated; these estimates are updated using a weighted 
average, with more weight being given to estimates with 
higher certainty. 

Kalman filter algorithm is recursive in nature; it uses the 
previously calculated state and its uncertainty matrix and 
present input to to produce optimized estimates. It does not 
require the additional past information. There are so many 
other extended and generalized methods (such as the extended 
Kalman filter and the unscented Kalman filter which work on 
nonlinear systems) of Kalman filter have been developed. 
Extended Kalman filter and unscented Kalman filter (the 
variants of Kalman filter) are the most celebrated and popular 
data fusion algorithms in the field of information processing. 
The most important use of Kalman filter was in the Apollo 
navigation computer that took Neil Armstrong to the moon, 
and (most importantly) brought him back. In recent years 
Kalman filters are at work in every smart phone, every 
satellite navigation device and many computer games 

After 55 years, Kalman filter is one of the most important and 
common data fusion algorithms in use today, the purpose of 
using Kalman filter include -  
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For m=1 to M 

Draw xt
[m] from with probability proportional to wt

[m] 

Xt = Xt + xt
[m] 

End for 

return Xt 

5. IMPROVED MONTE CARLO LOCALIZATION  

As discussed above Monte Carlo localization (MCL) is a 
technique for distance measurement of sensor nodes in wireless 
sensor network. It is based on particle filter combined with 
probabilistic models of sensor perception and motion. The main 
idea behind the MCL is to use a set of weighted samples and the 
posterior distribution of possible locations. There are two phase at 
each step- 

Prediction phase: - In this phase when the sensor moves, the 
uncertainty of its position increases. 

Update phase: - In this phase new observations are incorporated 
to filter and update data.  

This is the recursive process where the sensor updates the 
predicted location continuously. There are two major problems 
with the previous existing schemes. 

 First problem uses only a constant number of samples. 
 Second is all nodes cannot ne localized in all time slots.  

Improved Monte Carlo Localization (IMCL) technique  
overcomes these problems. Network model is introduced 

in IMCL scheme with five main parts that are discussed below 
as- 
 Bounding-box construction 
 Dynamic sampling 
 Time series forecasting 
 Samples weights computing 
 Maximum possible localization error computing 

 Building the Bounding Box 

 

In Bounding box of Improved Monte Carlo Localization (IMCL) 
there are two areas involved. These areas are – The candidate 
samples area and the valid samples area.  

Candidate Samples Area: - This area is used to draw new 
candidate samples. 

Valid Samples Area: - This area is used to identify and filter out 
the invalid samples out of all the available samples.  

There is a large probability that candidate samples drawn in the 
sampling step will be filtered out in the filtering step if the 
candidate samples area is large and the valid samples area is 
small. The construction of bounding box in IMCL schemes is 
shown above- 

 Dynamic sampling method 

For localization, the number of samples in the previous schemes 
is fixed like 30 or 50. But in Improved Monte Carlo scheme the 
number of samples is dynamic that is based on the size of the 
sample area. To estimate the nodes location accurately for a large 
anchor box, a large number of samples are needed. Whereas we 
focuses on a small area if the anchor box is small and for that 
small area to determine the position accurately; a small number of 
samples is needed. 

 Linear prediction using time series 

In a time- varying environment to predict time series, linear 
prediction method is a very helpful and powerful technique. 

 Weighting the Samples  

When a candidate sample is chosen, its weight is being calculated 
by using 1-hop (anchor) and 2-hop (common) neighbor nodes. 
The technique of computing weight is given below- 

 

 Error Computation 

The sensor node determines its position by computing the 
weighted average of these samples after obtaining N valid 
samples. Also with the help of the bounding box and position 
estimations, the sensor node can also determine the ERx and ERy 
as shown below.  
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6. CONCLUSION 

In this paper we discussed the problem of localization in wireless 
sensor network and studied so many approaches like Kalman 
Filtering, Extended Kalman Filtering, Monte Carlo Localization 
(MCL), and Improved Monte Carlo Localization (IMCL) to 
overcome this issue of localization in WSN. This paper will help 
to wireless sensor network designer to choose the best method 
(among the discussed above), to implement in their applications. 
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